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Abstract
We develop a simplified, model theory of noise caused by highly damped oscillating
conformational fluctuations of a chain molecule mediating a nano-junction. Considering the
most ‘primitive’ approximation of direct tunneling of electrons and barrier coupling with
collective coordinates that describe internal conformations of the chain molecule, we derive
approximate analytical formulas for the temporary current correlation function, noise power,
and Fano factor. We analyze the role of different cumulative parameters of the model that affect
the noise, as well as the effect of the temperature and of the number of groups in the chain. We
present this analysis in expectation of experiments on this type of noise and in an attempt to
trigger such experiments.

1. Introduction

Tunneling transport of electrons through nano-junctions can
be strongly affected by fluctuations. This is known to
influence the current dependence on temperature. Generally
speaking, it is possible to gain additional information about
the processes under study from the analysis of noise caused
by such fluctuations. But in order to gain anything sensible
from noise data, one must have a theory for such noise, and
as well be sure that this noise pattern is dominating or at least
distinguishable at the background of other sources of noise.
But the second part of this statement is difficult to assess,
before such theory is developed.

The interest in noise in tunneling junctions has a long
history. Leaving aside the immense literature on conductance
noise in quantum transport [1] and concentrating on the most
recent studies of the effects of the molecular motions on
bridge-mediated nano-junctions (for a comprehensive review
with the focus on vibronic effects see e.g. [2]) we wish to
outline the following main trends.

‘Ex situ’, dry wired nano-junctions, as well as ‘in situ’
(in solution) are considered in the literature, but a clear cut
distinction between the two cases is not always made in
particular publications. The following aspects of the problem
are usually considered, often separately.

There can be a ‘trivial’ effect of stochastic switching,
related to connection or disconnection of the bridge to one of

the terminals, often leading to a spectacular contribution to the
noise [3]. This, however, can be, in principle, excluded by
chemically anchoring the ends of the bridge molecules to the
electrodes.

A set of different noise patterns are considered, related to:

• Switching between different channels for electron trans-
port (as in Büttiker [4] or Troisi and Ratner [5]), which
could manifest itself in shot-noise measurements [6].

• Mesoscopic and collective electronic effects in a nano-
junction leading to not fully understood patterns of
noise [7].

• Inelastic effects on shot noise due to electron–phonon
interactions [8, 9], including also resonance tunneling
effects and Coulomb blockade [10, 11].

• Bridge free junctions with a noise caused by the
translational [12, 13] or orientational [14] motion of
molecules.

In this paper, we perform a very simple, perhaps
oversimplified study of the system in which the effects of the
fluctuations on the current have been detected and theoretically
understood, as a development of the theory of electron
tunneling under the barrier formed by a chain molecule with
independently fluctuating chain elements [15]. That theory,
call it a semi-phenomenological one, is of entirely ‘mean-
field’ kind; it has no electron correlation effects, no inelastic
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tunneling, and no resonance tunneling, but it has successfully
described experimental data of [16] on the dependence of the
activation energy of the tunneling current on the length of
the bridge molecule of alkanedithiol type. The same model
also described other regimes of temperature dependence [15],
which have not yet been experimentally studied. It has
also revealed intriguing rectifying properties in the nonlinear
current–voltage characteristics [17]. It seemed, therefore,
reasonable to work out a basis for the study of noise patterns in
this simple model.

2. The model and formulation of the problem

Before going any further, we state more precisely what our
model will not contain. We will not consider effects related
with the discrete nature of tunneling electrons. In what
follows it is assumed that the fluctuations along the degrees of
freedom coupled with electron transport are very slow. Thus, at
each set of values of collective coordinates {qi}, that describe
these degrees of freedom, a large number of electrons tunnel
between the electrodes, resulting in a current i{qi}. In other
words we assume that the situations where no electrons or a
just a few tunnel within the characteristic time interval t ′–t ,
corresponding to two neighboring values of {qi}, are negligibly
rare. And, as mentioned above, we will not consider multi-
electron correlation effects, inelastic or resonance tunneling.

Under these assumptions the current density at each time
moment t is equal to

i = evFρ�ε� (1)

where ρ is the density of electron states in the metal, �ε ∼
eVbias is the characteristic energy interval contributing in the
current, vF is the average velocity of an electron at the Fermi
level, and � is the Gamow tunnel factor

� = exp

(
− 2

h̄
l

N∑
i=1

√
2m [Vi − εF]

)
. (2)

Here, h̄ = h/2π , h being the Planck constant, m is the mass
(or an effective mass) of the electron, l is the length of each
‘i th’ chain element, N is the number of chain elements, and Vi

is the height of the tunneling barrier across this element.
The effect of fluctuations on the barrier will be

approximated by

Vi = Vmin + γ (qi − Q)2 . (3)

This form means that the barrier is minimal at a certain optimal
conformation when qi = Q, and it is larger at any other one;
γ is a constant that couples the barrier with the fluctuations of
qi . Using a quadratic form is the simplest way to approximate
this effect, which as we will see later allows for an analytical
solution of the problem.

The latter, however, will not be possible without a further
simplification—expanding the square root in the exponent

� ≈ exp

{
− 2

h̄
L
√

2mU − 2

h̄
lγ

√
m

2U

N∑
i=1

(qi − Q)2

}
, (4)

where L = l N is the length of the whole chain. Expansion (4)
assumes that for each chain element the fluctuations are small.
Using equations (4) and (1) we may write the current in the
form

i = i0 exp

{
−b

N∑
i=1

(qi − Q)2

}
. (5)

Here i0 is the current in the configuration optimal for tunneling
(all qi = Q),

i0 = evFρ�ε exp

{
− 2

h̄
L
√

2mU

}
(6)

b = lγ
1

h̄

√
2m

U
; U = Vmin − εF. (7)

We will assume hereafter that the ground state for all the
fluctuating degrees of freedom is reached at qi = 0. In other
words, in order to reach optimal configuration the coordinate qi

should fluctuate to Q. In the ground state the current is smaller
than the maximal current by a factor

exp

{
−b

N∑
i=1

(qi − Q)2

}∣∣∣∣
qi =0

= exp{−bQ2N }.

For a long molecule (N � 1) this could comprise orders of
magnitude!

This model is rather formal and it is not easy to
establish one-to-one correspondence of its parameters with
the microscopic parameters of each specific molecule, but
it ‘semi-phenomenologically’ takes into account the main
physical effects (a ‘chemical’ justification of this model for
alkanedithiols was given by Haiss et al [16] and analyzed in
some detail in [15]). Namely, the pertinent modes of each
chain element that affect the tunneling barrier may conform
to reduce the barrier, and the configuration that facilitates
tunneling is a higher energy one. Thus, this configuration will
not be the most probable one, but most efficient for tunneling,
and the tunneling electrons will have a chance to utilize this
configuration. The way how this proceeds is considered in the
next section.

3. Current correlation function

The goal of further treatment is the calculation of the
correlation function

K (t) = 〈i(t)i(0)〉 − 〈i〉2 (8)

and related quantities.
Assuming that all qi are independent, we write

〈i(t)i(0)〉 = i 2
0 e−2bN Q2

[s (t)] (9)

where
s (t) = 〈e−bq2(t)−bq2

0 +2bQ[q(t)+q0]〉N (10)

and q0 = q(0). Technically, the average sign here means

〈· · ·〉 =
∫

dq dq0 P(q0)P(q|t; q0) · · · (11)

2



J. Phys.: Condens. Matter 20 (2008) 374103 A A Kornyshev and A M Kornyshev

where P(q0) is the equilibrium distribution function of an
oscillator

P (q0) = (2πkBT/h̄ω)−1/2 exp

(
− h̄ωq2

0

2kBT

)
(12)

whereas P(q|t; q0) is the probability of having a value q at
time t provided it was q0 at time t = 0. To proceed further
we need to adopt a model of the random process that generates
fluctuations of q . This model will specify P(q|t; q0).

4. Analytical expression for the current correlation
function in the model of overdamped modes

The model for P(q|t; q0) will be based on a strong assumption,
but which is physically plausible for in situ junctions. We will
assume that oscillations of qi are overdamped, and thus [18]

P (q|t; q0) =
[

2π
kBT

h̄ω

(
1 − e−2t/τ

)]−1/2

× exp

{
− h̄ω

(
q − q0e−t/τ

)2

2kBT
(
q − q0e−2t/τ

)
}

. (13)

One may expect that this may be true when the fluctuating
fragments of the molecule are large, whatever it means. For
instance, if the bridge molecule consists of a chain of aromatic
rings, their rotation will meet even stronger resistance than
the rotation of water molecules, which are known to be
strongly damped. The friction against rotation of such rings
caused by the resistance of the surrounding solvent will be
the stronger, the larger the rings (especially if the rings have
long substituents). But even for the chain of alkanedithiols
the rotation of each chain element around the main axis of
the chain in water is not friction-free, and the friction should
be of the same order of magnitude as for rotation of water
molecules themselves. Somehow, one must not forget about
the assumption underpinning equation (13): for a bridged-
system for which the oscillator modes are not overdamped the
expressions derived below will not be valid.

To keep notations compact we will use below dimension-
less variables

x0 = q0

√
h̄ω/2kBT ; x = q

√
h̄ω/2kBT . (14a)

and parameters

Y = Q
√

h̄ω/2kBT ;
B = b2kBT/h̄ω; β = B/ (1 + B) .

(14b)

With these notations equation (10) takes the form

s (t) =
{

1

π

1√
1 − u2

∫
dx0 dx exp (−H (x, x0))

}N

, (15)

where

H (x, x0) =
{

x2
0 + (x − x0u)2

1 − u2
+ B

(
x2 − 2Y x

)

+ B
(
x2

0 − 2Y x0
)}

(16)

and
u = e−t/τ . (17)

For the calculation of the integral in equation (15) u is
just a ‘parameter’. The integral is Gaussian and thus can be
calculated exactly. It is equal to(

2π/
√

D
)

exp
[−H

(
x∗, x∗

0

)]
(18)

where D is the determinant of second derivatives of H

D = 4

1 − u2

[
1 + 2B + B2

(
1 − u2

)]
(19)

and (x∗, x∗
0 ) is the point of minimum of H (x, x0)

x∗ = x∗
0 = BY

(
1 − u2

)
1 + B

(
1 − u2

) − u
= BY (1 + u)

1 + B (1 + u)
. (20)

As a result we obtain an exact expression for s(t)

s (t) =
(√

1

1 + 2B + B2
(
1 − u2

)
)N

× exp

{
2N B2Y 2 (1 + u)

1 + B (1 + u)

}
(21)

where the t-dependence is involved only in u.
In a similar way we obtain the expression for 〈i〉2

〈i〉2 = i 2
0

1

(1 + B)N
exp

{
−2B NY 2

1 + B

}
(22)

where it is taken into account that bQ2 = BY 2.
Combining equations (9), (21), and (22) we obtain for

K (t) in equation (8) an exact expression

K (t) = i 2
0

1

(1 + B)N
exp

{
− 2N BY 2

1 + B

}

×
{(√

(1 + B)2

1 + 2B + B2
(
1 − u2

)
)N

× exp

{
2N B2Y 2u

(1 + B) (1 + B + Bu)

}
− 1

}
. (23)

Using the notation for β introduced in equation (14) we
may rewrite it in a slightly more compact form,

K (t) = i 2
0 (1 − β)N exp

{−2NβY 2
}

×
⎧⎨
⎩
(√

1

1 − β2u2

)N

exp

{
2Nβ2Y 2u

(1 + βu)

}
− 1

⎫⎬
⎭ . (24)

5. Noise power

Aiming to calculate below the so-called noise power

S (ω = 0) =
∫ ∞

0
dt K (t) (25)

and keeping in mind that the main contribution to this integral
comes from the K -values at small t , we introduce a new
function which is small at small t

v (t) = 1 − u (t) = 1 − exp (−t/τ ) . (26)

3
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In terms of this new variable the noise power takes the form

S (ω = 0) = τ

∫ 1

0
dv K (v)/ (1 − v) (27)

where the correlation function in terms of v(t) reads

K (t) = i 2
0 (1 − β)N e−2NβY 2

{(√
1

1 − β2 (1 − v)2

)N

× exp

{
2Nβ2Y 2 (1 − v)

1 + β (1 − v)

}
− 1

}
. (28)

The integral in equation (27) with expression (28) for the v

dependence of K can be easily calculated numerically. We,
however, may obtain an approximate result for the noise power,
if we approximate expression K (t) by its expansion near v =
0, i.e.

K (t) ≈ i 2
0

(
1 − β

1 + β

)N/2

exp

{
−2NβY 2

1 + β

}

× exp

{
−Nβ2

[
2Y 2

(1 + β)2
+ 1

1 − β2

]
v

}
. (29)

Insertion of equation (27) into equation (28) and replacement
of 1 − v by 1 in the denominator of the integrand gives an
approximate expression for the noise power

S (ω = 0) ≈ τ i 2
0

(
1 − β

1 + β

)N/2 exp
(
− 2NβY 2

1+β

)

Nβ2
[

2Y 2

(1+β)2 + 1
1−β2

] . (30)

6. The Fano factor

It is common to represent the noise power in the form

S (ω = 0) = 2e 〈i〉 F (31)

where the coefficient F (which has a dimension of inverse area)
is known under the name of the Fano factor. Equation (22) for
the average current in the same notation has the form

〈i〉 = i0 (1 − β)N/2 exp
(−NβY 2

)
. (32)

We hope that the definition of the Fano factor in
equation (31) in terms of the current density (rather than in
terms of the current commonly used) will not provoke any
confusion since the conversion to the common definition is
trivial. Moreover, the Fano factor defined by equation (31)
involves the factor i0τ/e which depends on the bias voltage
and relaxation time and therefore through these parameters it
depends on the specific experimental conditions. Therefore,
let us discuss below a reduced Fano factor, a dimensionless
quantity defined as

F r = eF/ i0τ. (33)

It is not that this quantity is a directly measurable one. We
simply focus the analysis on the part that does not include i0

and τ , as we may not know these values.

Figure 1. Example of the reduced Fano-factor dependence on the
number of the chain elements in the bridge molecule, calculated
using equations (33) and (34) {exact formulas}, as compared with the
one given by (33) and (35) {approximate formulas}. The reduced
Fano factor decreases with the increase of N , as should be expected.
Its absolute values calculated according to approximate formulas
differ significantly from the exact ones.

The exact expression for the reduced Fano factor reads

F r = (1 − β)N/2 e−NβY 2 1

2

∫ 1

0

dv

1 − v

{[
1

1 − β2 (1 − v)2

]N/2

× exp

{
2Nβ2Y 2 (1 − v)

1 + β (1 − v)

}
− 1

}
. (34)

This integral can be easily calculated numerically for given
parameters; an approximate form gives us an analytical
expression

F r
approx ≈ 1

2

1

(1 + β)N/2

exp
[
− Nβ(1−β)Y 2

1+β

]

Nβ2
[

2Y 2

(1+β)2 + 1
1−β2

] . (35)

Figure 1 shows the reduced Fano factor as a function of the
number N of the elements of the chain molecule and figure 2
presents its normalized value (with respect to its value at N =
3). Figures 3–5 show similar dependences on the strength of
coupling with vibrations, represented by the quantity β , and
figures 6 and 7 on the value of the coordinate corresponding to
the optimum potential barrier, Y (i.e. Q), characterizing how
far from the ground state it lies.

7. Noise dependence on the characteristics of the
bridge and temperature

The most interesting dependences which could be sought
in experimental studies are the length and temperature
dependences of the noise. Figures 1 and 2 show the
dependence of the Fano factor on the length of the molecule.
It decreases with the increase of N , which agrees with
the general result on the relative decrease of fluctuations
with the increase of the number of independently fluctuating

4
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Figure 2. The same as in figure 1, but for the Fano factor normalized
to its value at N = 3. The approximate formula describes well the
relative behavior of the Fano factor.

Figure 3. The same as in figure 1 but as a function of the strength of
coupling with vibrational modes. The β-dependence shows a
maximum that is understood from the behavior of the correlation
function at small and large β (see the text).

elements. Figures 3–7 show the dependence of the Fano
factor on cumulative, dimensionless parameters β and Y that
characterize different effects through combined quantities. β

characterizes the value of the coupling constant b relative
to the characteristics of the thermal fluctuations h̄ω/2kBT .
Similarly, Y characterizes the value of the dimensionless
normal coordinate corresponding to the maximum decrease of
the potential barrier relative to (h̄ω/2kBT )−1/2.

Therefore the dependence of the Fano factor shown in
figures 3–5, when being considered at fixed temperature, is
in fact its dependence on the coupling constant b. As seen
from figure 3 the dependence of the Fano factor on β reveals
a maximum and tends to zero at small and large values of β .
This behavior can be understood keeping in mind that in the
limit β → 0 (i.e. b → 0) the fluctuations do not alter the
height of the potential barrier, i.e. there is simply no noise. At

Figure 4. The same as in figure 3 but at moderate and large β-values
where approximate formula can be used.

Figure 5. The same as in figure 4 but for the Fano factor normalized
to its value at β = 0.4. This figure demonstrates that the approximate
formula provides a good relative behavior of the Fano factor also as a
function of the coupling strength (cf to figure 2).

large values of β the main contribution to the current comes
from the region near q = Q the width of the region decreasing
with the increase of β .

In the region of β-values after the maximum point the
approximate expression for the Fano factor may be also used
(see figures 4 and 5). As seen from figure 4 the accuracy of the
approximate formula in the absolute values of the Fano factor
is rather poor. However, it reproduces rather well its ‘relative’
behavior (figure 5).

The dependence of the Fano factor on Y being considered
at constant temperature is in fact its dependence on Q (figures 6
and 7). The reason for its decrease with the increase of Y is the
same as in the case of its dependence on β .

In order to calculate the temperature dependence, one
should take into account that both β and Y depend on the
temperature. The result is shown in figure 8. In general

5
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Figure 6. The same as in figure 1, but as a function of the coordinate
of the optimal potential barrier. The demand for larger fluctuations
needed to reach an optimum value of the height of the potential
barrier results in narrowing of the region giving contribution to the
current and therefore to a decrease of the Fano factor.

Figure 7. The same as in figure 6, but for the Fano factor normalized
to its value at Y = 0.4. Again the relative behavior provided by the
approximate formula is better than the absolute values.

the temperature dependence is qualitatively similar to the β-
dependence. The role of the parameter Y is not of great
importance at moderate Q-values.

Note that the temperature enters in combination kBT/h̄ω,
thus showing this combined variable in the range of 1–50,
although, of course, we do not mean to vary temperature in that
range! This plot instructs us that we may expect both growth
or decrease of the Fano factor with temperature, depending on
which side of the maximum we are.

The length dependence of the reduced Fano factor follows
the expected trend, the Fano factor decreasing with increase
of the length. Its dependence on coupling constant and
temperature at moderate Q-values is governed mainly by
one parameter β . Still, how to rationalize in simple terms
the non-monotonous character of the temperature dependence

Figure 8. Dependence of the reduced Fano factor (equation (33)) on
reduced temperature. The qualitative shape of the curve is similar to
that for the β-dependence, showing that the temperature dependence
involved in Y is not quite significant at moderate Q-values.

of the Fano factor, which has a maximum at intermediate
temperatures? The physics of this effect is as follows.

At low temperatures the increase of the Fano factor
with the temperature is quite trivial; it means that thermal
fluctuations in this region are largely suppressed, and the
increase of the temperature results in the increase of deviations
from the equilibrium configuration. These deviations may
be further from the optimal configuration or closer to it, but
at low temperature it is still a problem to reach the optimal
configuration—its average population is low. Somehow,
those fluctuations that bring the system closer to the optimal
tunneling configuration amplify the current more strongly than
those fluctuations that move the system away from it decrease
the current. In the end, thermal activation of such fluctuations
reduces the barrier [14]. This increases the average current as
well as the Fano factor.

When we further increase the temperature, reaching the
optimal configuration for tunneling becomes no longer an
issue. But the number of states around it is then visited so often
and the width of the region becomes so large that it ‘dilutes’ the
population of the optimal state and reduces the average current,
as well as the Fano factor. This effect is certainly much less
trivial. In between there must be a maximum! If detected
experimentally, its existence would be a strong argument in
favor of the considered model.

8. Conclusion

We have laid the basis for a description of noise in a tunneling
current across the bridge molecule in a pure under-barrier
tunneling mechanism of electron transport through it. Any
further speculations would be hardly constructive prior to
experiments, which are not available so far. We would be
happy if this theory stimulated such experiments, but there are
major challenges facing them, as there are a number of much
more trivial, apparatus-related sources of noise (for discussion

6
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see e.g. [19]), which must be subtracted from the overall signal.
In comparing the results with experimental data one should
also carefully compare the data against the prediction of other
models, see e.g. [8, 9]. Note that in the considered model
the reduced Fano factor is voltage independent, whereas the
voltage dependence of the Fano factor scales with the voltage
dependence of the average current. The theories based on
inelastic tunneling predict more sophisticated behavior [8, 10].
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